Persistence of Solutions to Nonlinear Evolution Equations in Weighted Sobolev Spaces

نویسندگان

  • XAVIER CARVAJAL
  • GAMBOA ROMERO
چکیده

In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces X s,θ, for s ≥ 2θ ≥ 2 and the initial value problem associated with the nonlinear Schrödinger equation is well-posed in weighted Sobolev spaces X s,θ, for s ≥ θ ≥ 1. Persistence property has been proved by approximation of the solutions and using a priori estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Persistence Properties of Solutions of Nonlinear Dispersive Equations in Weighted Sobolev Spaces

We study persistence properties of solutions to some canonical dispersive models, namely the semi-linear Schrödinger equation, the k-generalized Korteweg-de Vries equation and the Benjamin-Ono equation, in weighted Sobolev spaces Hs(Rn) ∩ L2(|x|ldx), s, l > 0.

متن کامل

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.

متن کامل

Application of the Realization of Homogeneous Sobolev Spaces to Navier-Stokes

Molecule spaces have been introduced by Furioli and Terraneo [Funkcial. Ekvac., 45 (2002), pp. 141–160] to study some local behavior of solutions to the Navier–Stokes equations. In this paper we give a new characterization of these spaces and simplify Furioli and Terraneo’s result. Our analysis also provides a persistence result for Navier–Stokes in a subspace of L2(R3, (1 + |x|2)αdx), α < 5/2,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010